Complexity of Bezout's theorem V: polynomial time
نویسندگان
چکیده
منابع مشابه
Complexity of Bezout's Theorem V: Polynomial Time
The main goal of this paper is to show that the problem of finding approximately a zero of a polynomial system of equations can be solved in polynomial time, on the average. The number of arithmetic operations is bounded by cN4, where N is the number of input variables and c is a universal constant. Let us be more precise. For d = (d 1, . . . , d,) each di a positive integer, let ZCd, be the li...
متن کاملSylow's Theorem in Polynomial Time
Given a set r of permutations of an n-set, let G be the group of permutations generated by f. If p is a prime, a Sylow p-subgroup of G is a subgroup whose order is the largest power of p dividing IGI. For more than 100 years it has been known that a Sylow p-subgroup exists, and that for any two Sylow p-subgroups PI, P, of G there is an element go G such that Pz = g-‘PI g. We present polynomial-...
متن کاملthe effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
Polynomial-Time Versions of Sylow's Theorem
Let G be a subgroup of S,, given in terms of a generating set of permutations, and let p be a prime divisor of 1 G 1. If G is solvable-and, more generally, if the nonabelian composition factors of G are suitably restricted-it is shown that the following can be found in polynomial time: a Sylow p-subgroup of G containing a given p-subgroup, and an element of G conjugating a given Sylow p-subgrou...
متن کاملPolynomial-Time Rademacher Theorem, Porosity and Randomness
The main result of this paper is a polynomial time version of Rademacher’s theorem. We show that if z ∈ R is p-random, then every polynomial time computable Lipschitz function f : R → R is differentiable at z. This is a generalization of the main result of [19]. To prove our main result, we introduce and study a new notion, p-porosity, and prove several results of independent interest. In parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1994
ISSN: 0304-3975
DOI: 10.1016/0304-3975(94)90122-8